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Abstract

Cardiac models of electrophysiology capable of gener-
ating simulated electrocardiogram (ECG) signals are an
increasingly valuable tool for both personalised medicine
and understanding cardiac pathologies. Sensitivity anal-
ysis (SA) can provide crucial insight into how simulation
parameters affect ECG morphology.

We use two SA methods, direct numerical evaluation
of integrals and polynomial chaos expansion, to calcu-
late main and total effects for ECG features extracted from
QRS complexes generated by a cardiac ventricular model.
The importance of stimulation site parameters on output
ECG features is evaluated.

SA methods can highlight and quantify important input
parameters for different ECG morphology features, which
in some cases can be linked to physiological explanations.
For example R peak amplitude in lead II depends on apico-
basal location of stimulation sites in the left ventricle. Fur-
thermore, different SA methods have different strengths
and weaknesses. Insight into parameter importance sup-
ports model development and allows for more nuanced and
patient-specific simulation changes.

1. Introduction

Cardiac models of electrophysiology that generate sim-
ulated electrocardiogram (ECG) signals are an increas-
ingly valuable tool for both personalised medicine and un-
derstanding cardiac pathologies [1]. Insight into how the
simulation input parameters affect the morphology of the
output synthetic ECG signal is crucial for tuning of model
parameters.

Sensitivity analysis (SA) is a valuable tool for exam-
ining such a relationship between morphological features
of the ECG and input parameters to the model [2]. Some
studies have explored the sensitivity of ECG features such

as the QRS complex with respect to parameter variations
in myocardial cells [3]. SA of ECG features as a function
of ventricular model parameters has been carried out [4].

Sobol SA quantifies the size of the effects of the model
input parameters on the model outputs (i.e. ECG features)
[2]. The main effect is the ratio of variance in the model
output due to a single input parameter, to overall variance
in the model output. The total effect for a given parameter
is the main effect plus the interactions that parameter with
other parameters [5].

This study examines how input parameters of one ven-
tricular model of electrophysiology impact features of the
output ECG signal, while atrial parameters remain fixed.
We want to evaluate in more depth the SA process itself to
understand what to bear in mind when carrying out SA of
complex heart models. Here we want to (1) use SA meth-
ods to understand how synthetic ECG model parameters
affect ECG morphology as measured by clinically relevant
measures and (2) understand the strengths and weaknesses
of SA methods for this task.

2. Method

2.1. Synthetic ECG dataset generation

To generate the synthetic QRS complexes a cohort of
anatomically-specific models was used. Primary tissues
of lungs, atria, blood pools, ventricles and general torso
tissue were segmented. Segmentations were then meshed
into volumetric finite-element meshes. All crucial as-
pects of cardiac electrophysiology during healthy sinus
rhythm were accounted for within the models to ensure
high biophysical fidelity. Given a set of model parame-
ters, a synthetic 12-lead QRS complex could then be com-
puted using a simulation method that combined a reaction-
Eikonal method formulated without diffusion for the car-
diac sources and a lead field approach for forward projec-
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tion. QRS complexes were extracted at standard electrode
positions [6].

Standard ECG feature extraction software typically re-
quires a complete ECG signal, so all synthetic QRS com-
plexes were appended to the same, generic P wave gener-
ated using a non-corresponding atrial model. To generate
the synthetic P wave, a volumetric atrial model allowed
regionally heterogeneous conductance properties to be as-
signed to spatially distinct regions of the mesh. A surface
representation of the torso was used, and the boundary el-
ement method was applied to project the transmembrane
voltage sources from the heart onto the body surface and
the 12-lead ECG P waves were extracted at standard elec-
trode positions [7].

Figure 1. An ECG signal indicating the main fiducial
points on the signal. Point 9 is reserved for the J point
if present and is excluded here.

In this study, the impact of ventricular model input pa-
rameters on ECG morphology was evaluated while atrial
model parameters were fixed to reduce complexity. Twelve
input parameters relating to stimulation site location were
varied according to a Saltelli sampling scheme (required
by one SA method, see Section 2.3), resulting in 14,000
synthetic ECG signals. The 12 input parameters were:
stim0z, stim0phi, stim1phi, stim1z, stim2z, stim2phi,
stim3z, stim3phi, stim4rho, stim4time, stim4z, stim4phi.
These parameters control the location of the stimulation
sites in a coordinate system defined relative to the heart,
with the exception of stim4time which controls the timing
of the stimulation in the right ventricle. A single generic
12-lead P wave was generated using mean values for the
conduction velocity parameters. To create a complete 12-
lead ECG, the generic P wave was appended to each of the
14,000 QRS complexes. Prior to appending, the P wave
was scaled to a more physiologically realistic amplitude
using P wave amplitudes from a real ECG dataset [8].

2.2. ECG feature extraction

The software ECGdeli [9] was used to identify fiducial
points (FPs) on the ECG (Figure 1). Five ECG features
were calculated for all 12 leads using the following FPs:

• R amplitude (value of the ECG at FP 6)
• QRS duration (difference between FP 8 and FP 4)
• QT interval (difference between FP 12 and FP 4)
• ST segment (difference between FP 10 and FP 8)
• T duration (difference between FP 12 and FP 10)

2.3. Sensitivity analysis

The main effect and total effects were calculated using
two methods: direct numerical integration of integrals (Di-
rect) and polynomial chaos expansion (PCE).

The Direct method is described in more detail elsewhere
[5]. The formulae defining the main and total effects are
given in terms of functions, which must be evaluated nu-
merically. To obtain the points at which to evaluate the
integrals, the input parameters were sampled according to
a Saltelli sampling scheme [5].

For PCE [10, 11] the stochastic output vector Y =
(y1, y2, ..., yV ) of the model acting on a set of U random
variables X = (x1, x2, ..., xU ) is expanded in an infinite
series [12] as:

yj(X) =

∞∑
i=0

γi,jΨi({xn}Un=0) (1)

Here, γi,j are the expansion coefficients to be determined,
and the polynomials Ψi of the multi index i represent a
multivariate basis depending on the input parameter distri-
butions. After γi,j are determined, a mathematical surro-
gate model is created which allows for calculation of main
and total effects. In the present case, the 12 input param-
eters allowed for a 4th order PCE [12], resulting in 4095
expansion terms.

Main and total effects were calculated using both the Di-
rect method and PCE method for all ECG lead and feature
combinations. Spearman’s rank correlation coefficient (R)
was used to compare agreement between both methods.

3. Results

3.1. Main effects

The R peak is typically the most easily identifiable fea-
ture on the ECG, and as such the detected R peak will be
more reliable than harder to detect features such as the T
duration [13]. Rank correlation (R) between the R ampli-
tude main effects using the direct and PCE methods ranges
from 0.45 − 0.92. Note that these values are often domi-
nated by one large coefficient, as typically only one or two
input parameters influence the output feature (see Figure 2
for an example).
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Figure 2. Rank correlation (R) between main effects cal-
culated with PCE and Direct methods (left), and corre-
sponding main effects for the Direct method only (right).

3.2. Convergence of main effects

Note that in Figure 2, the Direct method main effect for
stim2z and stim4z is negative; these should always lie in
the interval [0, 1] [5]. Further examples in Figure 3 (top
row) show that while the Direct main and total effects are
sensible in some cases (R amplitude, lead III), in other
cases they are not (QT interval, lead V5). Examining the
convergence of the Direct method in these cases (by grad-
ually increasing the sample size) showed that while the to-
tal effects converged well, the main effects did not, par-
ticularly for the interval as opposed to amplitude variables
(data not shown). This is likely due to the discrete (time
in ms) rather than continuous (voltage) values of these fea-
tures. The same effect was not shown in the PCE main and
total effects, see Figure 3 (bottom row).

Figure 3. Example main and total effects for (top left)
Direct method R amplitude, lead III, (top right) Direct
method QT interval, lead V5, (bottom left) PCE R ampli-
tude, lead III, (bottom right) PCE QT interval, lead V5.

3.3. Total effect method comparison

Rank correlation between total effects calculated with
both the Direct and PCE methods showed good agreement
for the features (Table 1). For a breakdown of rank corre-
lation coefficients by lead, see Figure 4.

Table 1. Rank correlation coefficient between Direct and
PCE total effects. Mean and standard deviation shown for
each feature across all leads.

Feature Rank corr. coeff.
R amplitude 0.97 (0.03)
QRS duration 0.91 (0.11)
QT interval 0.90 (0.09)
ST segment 0.93 (0.07)
T duration 0.87 (0.11)

Figure 4. Rank correlation between Direct and PCE, total
effects only, for each lead/feature combination.

3.4. Input parameters & ECG morphology

The largest total effect(s) for each lead/feature combina-
tion indicates which of the input parameters has most influ-
ence on that particular feature of the ECG morphology. An
example of main and total effects for lead II features can be
seen in Figure 5. R amplitude for lead II is very sensitive
to stim0z and stim2z. These input parameters control the
apico-basal location of two of the activation sites in the left
ventricle. When the vector along the apex to base direction
of the heart is aligned toward the same direction of lead II,
more signal is detected in lead II, so this sensitivity has a
physiological explanation.
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Figure 5. Direct method main and total effects for lead II
R amplitude.

4. Discussion

Sensitivity analysis provides quantitative insight into
how simulation input parameters can impact resulting
ECG morphology. In certain cases, such as lead II R am-
plitude, the important input parameters can be linked to a
physiological explanation. Further exploration of physio-
logically meaningful explanations of SA findings will be
beneficial.

Here we have shown good agreement between two dif-
ferent methods, Direct and PCE, for calculating total ef-
fects. Convergence of the main effects using the direct
methods was poor, sometimes resulting in negative main
effects, and work is underway to explore this further, and
to better understand the interactions between model com-
plexity and output feature distribution to see how this im-
pacts the final output parameters [14].

It should be noted that these results are on one dataset
and conclusions regarding relationships between input pa-
rameters and ECG features should not be taken as conclu-
sive. However, observations, such as how performance is
impacted when the extracted feature is based on interval
measurements, can be generalised to other studies.

The SA methods used consider the ECG simulations
plus feature extraction software as one black box model,
as it is concerned only with the input and output. As some
ECG features are harder to detect than others [13], this will
make the problem more ill posed for some features. Ongo-
ing work is exploring the relationship between output fea-
ture distribution and main or total effect calculation [14].

5. Conclusion

We compared two widely used SA methods, Direct and
PCE, for synthetic 12-lead ECG data. The methods were
in good agreement, which enables a more flexible and re-
liable approach to SA on ECG data in practice. Sensitiv-
ity analysis provides valuable information about the rela-
tionship between simulated ECG morphology and input
parameters in cardiac models, supports the model build-
ing process and can allow for more nuanced and patient-
specific simulation changes.

Acknowledgments

This project 18HLT07 MedalCare has received funding
from the EMPIR programme co-financed by the Participat-
ing States and from the European Union’s Horizon 2020
research and innovation programme.

References
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